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Abstract. Two-dimensional vesicles are modelled as pressurized, self-intersecting rings. 
The fluctuating motion of the bounding walls of the vesicle, when it is subjected to the 
random collisions of fluid molecules, is treated along the lines suggested by Rouse in his 
study of dilute polymer solutions. Within the model, exact solutions of the dynamical 
equation governing the probability distribution of shapes, when expressed in an appropriate 
set of normal coordinates, is obtained. Numerical simulations of the dynamical evolution 
of the distribution of the principal components of the square of the radius of gyration are 
also presented. 

1. Introduction 

Irregular objects formed by random processes abound in nature. Long, chain-like 
macromolecules, Bexibile membrane surfaces, percolation and spin clusters are but a 
few of the examples occurring in biology, chemistry and physics. Examples can also 
be found in astronomy, geology and information science. Elucidating the sizes and 
shapes ofthese objects has long been a challenge to the experimentalist and theoretician. 
Since the early work of Kuhn (1934) on polymers (see also Sol2 (1977) and Rudnick 
and Gaspari (1987)), significant progress has been made over the past 20 years in 
developing a theoretical framework useful in characterizing random structures (de 
Gennes 1979, Nelson et all987 and references therein). Modem approaches involving 
computersimulations, simple scaling arguments and sophisticated analytical techniques 
with roots in statistical field theory have proved enormously successful in this regard. 

Most investigations to date that deal with shapes have been on systems in thermody- 
namic equilibrium. The statistical analysis is carried out using conventional statistical 
mechanical ensemble theory, yielding results that pertain to static conformations only. 
Calculations along these lines have been performed by us for polymers (Gaspari et a1 
1987) and, more recently, on pressurized two-dimensional random walks (see Rudnick 
and Gaspari (1991) and the preceding paper Gaspari et al (1993)). The latter is a 
simplified version of a model of a two-dimensional vesicle acted on by osmotic pressure 
forces, recently formulated by Leibler and Fisher and co-workers (Liebler et al 1987, 
Camacho and Liebler 1990). These authors were the first to represent a two-dimensional 
vesicle as a self-avoiding random polygon walk. Their Monte Carlo simulations based 
on this picture provided a complete numerical description of the static shapes of these 
objects and their scaling properties for both positive and negative pressure differences. 
The two pressure regimes are called ‘inflated’ and ‘deflated‘, respectively. Self-avoidance 
causes the theoretical study to be analytically intractable and necessitates a numerical 
approach such as the one they utilize. However, as has been noted by us, permitting 

0305-4470/93/010015+ 10%07.50 0 1993 IOP Publishing Ltd 15 



16 G Gaspari et a1 

walks to cross transforms the statistical theory to one that is completely solvable, 
leading to closed-form expressions for the probability distribution of shapes, and 
providing analytical formulas for various parameters describing the average shape of 
the walk (Rudnick and Gaspari 1991). 

The two-dimensional vesicle is an extreme simplification of the actual system, but 
it is one that allows the intuitions of the theoretical physicist to be applied to the 
problem of vesicle behaviour. Because of the relationship between the statistical 
mechanics of the one-dimensional membrane bounding a two-dimensional vesicle and 
the statistical mechanics of a ring polymer, one is free to call on the body of results 
for the latter system. The problem of a real, three-dimensional vesicle bounded by a 
two-dimensional membrane is notoriously difficult. The analytical solution of this 
problem will require techniques transcending those developed here. However, one can 
imagine polymer rings confined to two-dimensional surfaces whose dynamical evol- 
ution would be asymptotically described by the methods developed here. Such rings 
could easily flip over, thus achieving the crossovers allowed in the model. Moreover, 
it is hoped that the results found for this simplified picture also have relevance to the 
behaviour of vesicles in higher dimensions. 

This paper extends our previous research on static conformations of vesicles to 
include dynamic effects, where the bounding wall now deforms in time according to 
stochastic laws, The time evolution of the deformation can be described using both 
the Langevin and Smoluchowski formulations of the random process (see Chandrasek- 
har (1942) and Chen and Uhlenbeck (1945) for a summary of earlier work). Langevin’s 
equations are set up and point to an appropriate set of generalized coordinates in 
which the motion of the bounding wall is described. In these coordinates, the desired 
dynamical distribution of shapes is easily determined by solving Smoluchowski’s 
equations. The vesicle’s shape can then be monitored in time from an arbitrary initial 
conformation to its asymptotic approach to equilibrium after considerable time has 
passed. 

Thus, the system is a very dilute film of polymer-like rings being buffeted about 
by the liquid medium of the film while feeling the forces of an osmotic pressure 
differential between the inside and outside of the wall. As in the static case, we find 
that for a dynamical model, similar to the one first articulated by Rouse (1953) in his 
study of the visco-elastic properties of dilute polymer solutions, the stochastic equations 
yield complete analytical solutions in the dynamical case as well. While the model 
may be criticized, in as much as it oversimplifies the actual forces felt by the vesicles, 
its exact statistical description offsets this disadvantage. Moreover, there is no reason 
why more realistic approximate theories (Zimm (1956) or see Stockmayer (1973) for 
a critical review of this and other work), which have been used to successfully interpret 
a range of dynamical flow coefficients, cannot be brought to bear here as well. It must 
be borne in mind that when dealing with two-dimensional films rather than three- 
dimensional solutions, neglecting certain interactions may not be so severe. In any 
case, we view the results as a ‘first cut’ theory in a difficult but interesting field of study 
with immense technological importance. It is hoped that the work presented here will 
stimulate further developments in the subject (see Schwartz and Edwards (1988) and 
Edwards and Schwartz (1990) for a different approach). 

An outline of this work is as follows. In section 2 the dynamical model is specified 
and the Langevin equations are solved. The probability distribution of vesicle shapes 
is determined in section 3. The results of numerical simulations and concluding 
comments are contained in section 4. 
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2. Langevin theory of vesicle dynamics 

Case A: P=O. The static conformations of two-dimensional vesicles are patterned as 
random polygonal walks of N steps (Leibler er a1 1987) whose edges obey Gaussian 
statistics. For the moment, it is assumed that no osmotic forces are applied, and the 
vesicle is allowed to cross itself. A given shape, specified by the two-dimensional 
vectors 711, qz, . . . , oN, linking the N + 1 vertices of the polygon has a probability 
distribution 

with A2 being the mean square length of any link. The walk is closed; therefore the 
constraint of zero net displacement must be maintained by the links 

N 

It proves useful to express equation (1) in terms of the position vectors of the 
vertices, R, : 

Equation (3) gives rise to the notion, at least as far as conformations are concerned, 
that the vesicle may be represented as a collection of mass points (i.e. beads) connected 
by springs, with a configurational probability given by the usual Boltzmann result 

P(Rl ,  R 2 , .  . .) =e-B”/Q (4) 

with U being the potential energy of the ‘mechanical’ system and Q its configurational 
partition function. In particular, 

and 

Q = d2Rl . . . e-pu. 

The dynamical motion of a solution of vesicles will then be governed by the Brownian 
motion of the beads. We assume that the forces can be divided into three classes: the 
elastic forces between the beads on the chain, a steady resistive drag and the random, 
collisional forces. Both of the last two forces are due to the liquid medium. To this, 
any externally applied forces must be added. Backflow, which leads to an indirect 
bead-bead interaction via the perturbed liquid medium, is neglected. The model just 
described was successfully utilized by Rouse (1953) in describing the motion of dilute 
polymer solutions. The model can be improved upon (Zimm 1956), but such corrections 
are omitted in our treatment for reasons mentioned in the introduction. The con- 
sequence is a local, linear theory of dynamics. 

Langevin’s equation for the rvth bead is 
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The inertial term may be dropped when considering times long compared to the 
relaxation time, which is the case here. This restricts the applicability of the theory to 
the diffusive regime. Dropping the acceleration term reduces the equation of motion to 

the quantity EL being the mobility constant, while f ( t )  is a random, impulsive, force. 
The fluctuations are assumed to be Markovian, and time intervals are of such a duration 
that the distribution of impulses can be taken to be Gaussian, which follows from the 
application of the central limit theorem. Both assumptions are necessary for Langevin's 
and Smoluchowski's approaches to be equivalent formulations. Using equation ( 5 6 )  
for U results in an equation of motion for the beads when no external forces are 
present. In particular, the system of equations which must be solved is 

(8) 
1 aR, 

~ ( 2 %  -Rm-i-Ra+i) + f ( f )  --=_ 
P a t  

subject to 
27r 
EL 

(f*.(t)f,(t'))=--*~S,s(t-1') ( f ( t ) ) = O  

and the constraining equation 
N 

C (Ra+i-Ra)=O (9) 
m - I  

with y = 2kT/A2. When the number of links is large, N >> 1, no loss in generality occurs 
if the continuum limit is taken, e.g. 

Throughout the remainder of the paper, the replacement of differences by derivatives 
will be made whenever it proves convenient. Equation (8), when displacement or link 
vectors qo are used, becomes, in the continuum limit, 

where ga(f) = f e c l ( f )  -fe( 1 )  are random forces with the statistical properties 

The above equations describing the Brownian motion of the beads need to be modified 
if osmotic pressure forces are acting on the wall of the vesicle. Additional force terms 
must be added to equation (10). We now focus on this case. 

Case B:p# 0. Pressure iduences the conformational probability distribution through 
the additional Boltzmann factor exp(ApA/kT). The quantity A is the area enclosed 
by the wall of the vesicle, and Ap =pi. -pout is the pressure differential. Using Green's 
theorem, it is a straightforward exercise to express A as a function of link coordinates 
of the bounding polygon (Rudnick and Gaspari 1991) 

A=$C qorv,&(a-P) (12) 
a0 
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the function 4 being the unit step function. The above expression for the area has a 
sign tagged to the path indexing, i.e. paths which are flipped change sign. The operation 
Ap+-Ap is equivalent to flipping all paths, with the consequence that the deflated 
regime becomes inaccessible. The theory discussed here applies, therefore, only to the 
ida t ed  regime Ap > 0. 

The potential energy, U, now contains the term ApA in addition to the elastic 
energy of the springs. We point out that the statistical analysis done here will be for 
constant pressure, although constant-area ensembles can be handled as well by the 
theory. The precise prescription for carrying out that procedure is presented in our 
work on vesicle statics (Gaspari et al 1993). 

The potential energy takes on the form 

which gives for the force on the a t h  bead, 

It is clear how Langevin’s equation must be modified when osmotic forces are acting. 
For the a th  link, we have 

Pressure couples the equations. 

the components. This is accomplished by expressing 17.: as a finite Fourier series, 
It is useful to transform to Fourier amplitudes as a first step toward decoupling 

with k = 257s/ N, s = 1,2, . . . . Note that the term k = 0 is not present in equations (16), 
thereby guaranteeing that the constraint equation 

c ~ ~ x = ~ v . y = o  
e CI 

will be satisfied. In momentum space, then, Langevin’s equations take on the form 

and similar equations for A; and B;, with g:(g;) the cosine (sine) transform of g.(t) 
satisfying the correlation equations 

M.i(tkLj(t’)) = 0 
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The above system of equations is compactly written in matrix form. For that purpose 
we introduce a dimensionless time, r and pressure, p :  

We will also show that p , = 4 m / N  defines a critical value of the pressure, with the 
property that as p + p c  the vesicle wit11 no longer be able to contain the fluid inside, 
and, presumably, explodes. In dimensionless units, indexing with the integer s defined 
by k = 27rs f N, we have 

Fluctuation terms have been suppressed for the moment for simplicity. The coupled 
first-order equations are solved by standard techniques of linear algebra. The matrix 
has two-fold degenerate eigenvalues A: = (1 ; t p / p c s ) ,  with linearly independent eigen- 
vectors. The orthogonal transformation effecting the diagonalization is 

0 l o x :  

f i o - 1  1 0 0 1  1 ) t )  x: 

0 -1 0 x: 

with the x: obeying the equations of motion 

for i = 1,2 
for i = 3,4. 

Now that the proper set of variables have been discovered, it is easiest to proceed 
directly to the probability distribution itself. The pertinent equation describing its time 
development is the Smoluchowski equation, which is often referred to as the Fokker- 
Planck equation. 

3. Dynamical probability distribution 

The conformational probability distribution factors into modes in the space of normal 
coordinates; we write 

N 4  
P(. .. x:. . .)= n n p ( x : ) .  (22) 

I = I  i = 1  

The Smoluchowski equation governing the time behaviour of P is separable in these 
coordinates and takes on a rather simple form. Using equation ( 2 2 ) ,  and employing 
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standard arguements (Doi and Edwards 1986), leads to 

which has the well known solution 

The solution for p(x:) has the boundary condition that as 7’0, p(xi)+6(x:-xa) 
corresponding to the initial configuration of the chain, whereas as 7-m 

demonstrating that the dynamical distribution correctly moves toward the equilibrium 
distribution of static conformations in time. With this, the dynamical problem, at least 
within the model, is solved in principle. What remains is to compute appropriate 
averages using it. 

As an example, consider the square of the radius of gyration, R 2 ( t ) .  This quantity 
will change with time, and its average is a useful single-parameter measure of the 
extent of the vesicle as measured from its centre-of-mass. For a specified shape of the 
chain, R’ is defined to be 

with R,  being the centre-of-mass for this particular walk. To calculate the average 
R2 using equation (24) requires the radius of gyration to be expressed in normal 
coordinates. This is accomplished by realizing that (Rz)  has the expansion (Forsman 
and Hughes 1963) 

2 N  

i = ,  eo=, 
Z Z %(T~<TD,) 

where a,, is a real symmetric matrix with elements 

Fourier decomposing the 7 s  and, finally, transforming to normal coordinates via 
equation (20) leads to 

the averages being taken over the probability distribution just calculated. The integrals 
become essentially Gaussian on changing to normal coordinates. We find 
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with 

&(r)  = xio exp(-s2A:r). 

Equation (28) has the expected limits for (R*(r) ) :  

(R2)+ R2(0) as r-fO 

which is the correct average for the squared radius of gyration for the static case. In 
addition, (R2(r) )  behaves properly when the pressure approaches its critical value. In 
the case p + p c  = 4m/ N we observe that the s = 1 mode eigenvalue A - +  0, while all 
other eigenvalues stay finite. The consequence is that (R2(r) )  grows linearly in time. 
That is, 

We see that the radius grows diffusively, (R2) =4Dt. The diffusion constant is given by 

Similar behaviour was observed in our study of the static case. That is, as p approaches 
the critical pressure, p c ,  the vesicle walls can no longer maintain the pressure differential, 
and the vesicle 'pops'. Notice that the consequences of this behaviour can also be 
inferred from equation (24). The probability distribution for the circular, s = 1, mode 
evolves ditrusively for all times and does not relax to a Boltzmann form with finite 
width when p = p . ,  which again indicates that the system becomes unstable at the 
critical pressure. With regard to the influence of self-avoidance in this regime, we note 
that a calculation in the context of the static properties of this model (Gaspari et al 
1993) indicates that, in the immediate vicinity of the critical pressure, self-avoidance 
has only a perturbative effect on the properties of the inflated vesicle. This result is 
consistent with the intuitively appealing conclusion that when a vesicle wall is stretched 
to breaking point, it will not bend back on itself. 

Other parameters characterizing the dynamical evolution of a vesicle's average 
shape can be calculated in a similar manner. However, a complete statistical description, 
rather than average values, is available from the joint probability distribution of the 
principal components, A ,  and A 2 ,  of the radius of gyration tensor, P(A, ,  A2). The 
gyration tensor expressed in terms of link coordinates (Forsman and Hughes 1963) is 

Ti = E ampvnlTpi R2 =Trace (32) 

In two dimensions, is a 2 x 2  matrix with eigenvalues A ,  and A 2 ,  the principal 
components of the radius of gyration. For the static conformations, we derived an 
exact formula for P(AI, A2) (Gaspari et a1 1993), but when the system is no longer in 
equilibrium these results no longer hold. However, it is a straightforward exercise to 
calculate the dynamical distribution function of the principal moments numerically 
for the equations described above. 

*P 
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4. Simulations and conclusions 

The equations that govern the dynamical evolution of the vesicle bounding wall are 
readily amenable to simulation. We have generated distributions controlled by 
equations (22)-(24). The method by which the distributions are generated is described 
in the preceeding paper (Gaspari et al 1993). Briefly, equations (16), (19), (20), (22) 
and (24) are used along with a Gaussian random number generator to generate 
distributions of moment-of-inertia matrices at various times. From these matrices we 
obtain distributions of the principal components of the radius of gyration. As an initial 
condition, we took a vesicle with N = 100 that was constrained to be in a circular 
configuration. Thus, the initial distribution of A’s is a point. The quantities y and A’ 
have been set equal to 1, so lengths are normalized to the equilibruim root-mean-square 
distance between nodes on the closed walk. The time is expressed in units of (27r/N)’ 
7, where T, the normalized time, is defined below equation (18). The circumference of 
the initial walk is equal to the value that it would be if the distance between nodes 
were equal to the equilibrium RMS distance. That is, we are attempting to simulate 
what would happen if a two-dimensional vesicle whose wall is made up of rigid rods 
was placed in a zero-pressure environment after having been stretched into a circular 
shape. The results of these preliminary investigations are displayed as figures 1 and 2. 
In line with expectations, we find that as the vesicles in the ensemble fluctuate the 
distribution relaxes to the form predicted by equilibrium theory (Gaspari et a1 1993). 
This relaxation is more or less monotonic, but there are, nevertheless, interesting 
features, including an intermediate spreading out of the distribution of As during 
intermediate stages that is partially reversed at the end stages of relaxation. Clearly, 

11. 
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Figure I. Histogram plot of the dynamical probability distribution function of the square 
of the radius of gyration, P ( R ’ = h , + h J ,  at various times. At r = O ,  P(R‘) is a delta 
function spike at A ,  + A? = 2. The spike is not displayed. The osmotic pressure difference 
is taken to be zero. 
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Figure 2. Time evolution of contour plols of the joint eigenvalue distribution, P ( A , ,  A>).  
The quantities A!  and A% are the principal components of the radius of gyration. As in 
figure 1, the osmotic pressure difference is equal to zero. At I = 0, P ( A , ,  A,) is a point at 
A ,  = A 2 =  1. This initial distribution is not shown. 

the simulations reported here do not constitute a definitive study of the dynamics of 
this model of two-dimensional vesicles. However, we do feel that they provide evidence 
that the approach to vesicle dynamics discussed in this article, and the model to which 
this approach is applied, will prove useful in future investigations of this important 
system. 
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